A penalized method for multivariate concave least squares with application to productivity analysis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A penalized method for multivariate concave least squares with application to productivity analysis

We propose a penalized method for the least squares estimator of a multivariate concave regression function. This estimator is formulated as a quadratic programming (QP) problem with O(n) constraints, where n is the number of observations. Computing such an estimator is a very timeconsuming task, and the computational burden rises dramatically as the number of observations increases. By introdu...

متن کامل

Least – Squares Method For Estimating Diffusion Coefficient

 Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...

متن کامل

LEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT

Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.

متن کامل

Penalized Least Squares and Penalized Likelihood

where pλ(·) is the penalty function. Best subset selection corresponds to pλ(t) = (λ/2)I(t 6= 0). If we take pλ(t) = λ|t|, then (1.2) becomes the Lasso problem (1.1). Setting pλ(t) = at + (1 − a)|t| with 0 ≤ a ≤ 1 results in the method of elastic net. With pλ(t) = |t| for some 0 < q ≤ 2, it is called bridge regression, which includes the ridge regression as a special case when q = 2. Some penal...

متن کامل

L1-norm Penalized Least Squares with Salsa

This lecture note describes an iterative optimization algorithm, ‘SALSA’, for solving L1-norm penalized least squares problems. We describe the use of SALSA for sparse signal representation and approximation, especially with overcomplete Parseval transforms. We also illustrate the use of SALSA to perform basis pursuit (BP), basis pursuit denoising (BPD), and morphological component analysis (MC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Operational Research

سال: 2017

ISSN: 0377-2217

DOI: 10.1016/j.ejor.2016.08.026